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ABSTRACT

An error probability analysis is performed for a conventional noncoherent M-ary

orthogonal frequency-shift keying (MFSK) receiver employing fast frequency-hopped

(FFH) spread spectrum waveforms transmitted over a frequency-nonselective, slowly

fading Ricean channel with partial-band noise interference . Each diversity reception is

assumed to fade independently. The partial-band interference is modeled as a Gaussian

process. The effects of wideband thermal noise are also included. The energy per hop is

held constant: thus, as diversity increases, energy per symbol increases. Previous

analyses considered only constant energy per symbol systems. however, practical military

systems are likely to employ fixed hop rates. There is some performance enhancement to

be obtained from implementing diversity in a conventional FFH/MFSK system with fixed

hop rates. but partial band interference still results in significant degradation.

Additionally, the performance of this FFH receiver is investigated over the same

channel in the presence of partial-band tone jamming without diversity for the case of

binary frequency-shift keying (BFSK) when both the signal and the jammer can fade

independently. Performance when only a single jamming tone per hop slot is allowed is

compared to that obtained when two jamming tones per hop slot arc possible. When the

jamming signal experiences Rayleigh fading there is very little degradation of the

jammer's effectiveness as compared to when the jamming signal is not affected by fading.
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I. INTRODUCTION

A fast frequency-hopping (FFH) communication system is a subset of spread

spectrum communications that utilizes a bandwidth greatly exceeding that required for

the information signal alone. Frequency-hopping spread spectrum is fundamentally

different from direct sequence (DS) spread spectrum in the technique of signal generation

and recovery. This thesis focuses on frequency-hopping spread spectrum systems

because of their practical military importance. As spread spectrum systems grow more

popular and occupy wider communications bandwidth, the likelihood of both hostile and

non-hostile sources of narrowband interference also grows. It is important for mission

planners to have a reliable estimate of the degradation that their communication systems

will suffer under partial-band noise interference as well as tonal interference. Fast

frequency-hopping spread spectrum techniques have evolved to counter the threat of

intentional jamming [Ref. 11. This thesis presents an error probability analysis of the

conventional fast frequency-hopped orthogonal M-ary frequency-shift keying

(FFH/MFSK) receiver with noncoherent detection for communications over channels

with Ricean fading of the signal and partial-band noise interference. The influence of

partial-band tonal interference on the binary orthogonal frequency-shift keying

(FFH/BFSK) receiver without diversity where both the signal and jammer may fade

independently is also considered.



A. FFH / MFSK

Frequency-shift keying is popular as a signaling scheme be,ýause it allows for

noncoherent reception of the signal. A typical MFSK signal set can be expressed as

s i (t) = I2 Accos(2tfot+O t ) (1)

S2(t) = ý,iAccos [27(f, + Af)t + 021 (2)

and so on to

sM(t) = 12'Accos [27r(fo + (M- 1)Af)t + 0M] (3)

wherefo is the lowest signal tone, Af is the tone spacing, and 0 , is the phase associated

with each tone. This set is then modulated by a carrier that varies pseudorandomly in

frequency for transmission as a frequency-hopped signal.

All communication signals suffer from interference and noise. One method to

overcome this degradation is to transmit the signal more than once thus providing a form

of diversity. Fast frequency-hopping employs this redundancy as well as deliberately

spreading the bandwidth. Frequency-hopping systems in which several symbols are

transmitted per hop are considered slow frequency-hopping, while those transmitting

several hops per symbol are considered fast frequency-hopping. Our FFH/MFSK

transmitter performs L hops per data symbol, which results in a diversity of L. At the

receiver the dehopped signals are recovered noncoherently by two correlators in phase

quadrature with the dehopped signal waveform. The correlator outputs are sampled every

Th seconds, where Th is the hop period. The sampled output of each correlator pair is
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squared and then these outputs are sunmmed L times to obtain the decision statistic for

each branch of the M-ary detector. The largest signal detected is selected as the

transmitted symbol. A typical receiver structure is shown in Figure 1.

Proper reception and demodulation of the spread signal depend on the recovery of

several pieces of timing information. Both the sender and receiver need the same

pseudorandom sequence operating synchronously. Also required are the symbol period

and the hop period. In practice these are estimated from the received waveforms. This

thesis assumes that this information is recovered without error.

B. MULTI-PATH EFFECTS

The losses experienced by the signal during propagation is worthy of an entire study

in itself. However, it is useful to make some general observations on the composition of

the received signal. It is possible and even likely that the received signal arrives at the

receiver after transiting a variety of different paths. Signals traveling a longer distance

arrive delayed relative to the direct path signal. This leads to multi-path effects. The

magnitude of the multi-path effects depends on the magnitude of the delayed signal

strength versus the direct path signal strength. It is common to consider the sum of all

delayed signals as the diffuse component of the received signal. [Ref. 2)
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The consequence of multi-path reception is to cause the signal to fade in a time

varying fashion. We can broadly characterize the channel conditions by examining the

magnitude of the direct signal power to the diffuse signal power. The Ricean channel is

the general case. Channels that have nearly all the received signal energy in the direct

component, i.e., direct-to-diffuse ratio greater than 100, have essentially no fading. In the

limit, an infinite direct-to-diffuse ratio implies a Gaussian channel. Channels that have

nearly All the received signal energy in the diffuse component, i.e., direct-to-diffuse ratio

less than one, have strong fading. A direct-to-diffuse ratio of zero implies a Rayleigh

channel. For direct-to-diffuse ratios between these extremes the channel experiences

Ricean fading. This thesis examines the performance in each of these broad categories.

In addition to these broad categories, the time varying nature of the channel can be

described as slow or fast. In this thesis the channel properties are assumed to be constant

over the duration of a hop and, therefore, slowly varying. Further, the channel may

introduce some signal distortion arising from the treatment of sinusoids comprising the

signal set within a hop differently. This distortion is characteristic of frequency selective

channels. However, it is reasonable to assume that the signal sinusoids experience the

same multi-path effects. This is the case in frequency nonselective channels. One

measure of this phenomenon is the coherence bandwidth of the signal. The coherence

bandwidth is the frequency range over which the signal frequencies pass through without

distortion. This can be summarized mathematically as

(Af)c = 1 (4)
Tm
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where (Af)€ is the coherence bandwidth and T7, is the multi-path spread of the channel.

A frequency nonselective cannel displays a coherence bandwidth that is larger than the

signal bandwidth. The rate of fading is related to

(At), 1 (5)

The coherence time is (At), and Bd is the Doppler spread of the channel. Slowly

fading channels display a large coherence time or, conversely, a small Doppler spread.

These descriptors are discussed further in the system description. [Ref. 2] The use of

diversity to mitigate the multi-path effects for conventional MFSK has been widely

investigated [Refs. 2, 3, 4].

When analyzing performance it is important to distinguish between a constant energy

per hop system and a constant energy per symbol system. As diversity increases, the total

symbol energy in a constant energy per hop system increases, while the symbol rate

decreases. However, in the constant energy per symbol system. increasing diversity, L,

implies decreasing hop duration, Th. Hence, a constant data rate is maintained, but the

energy per hop is reduced. Since many practical military communication systems employ

a fixed hop rate and a variable data rate, the constant energy per hop assumption is more

logical [Ref. 5].

C. CONSTANT ENERGY PER HOP SYSTEMS

Previous work has examined the performance of the noncoherent MFSK receiver in a

Ricean fading channel with partial-band noise interference and constant energy per

6



symbol [Ref. 3]. Additionally, the performance of the conventional BFSK receiver under

partial-band noise jammin without the multi-path effect of fading is analyzed in [Ref. 61.

However, these investigations do not consider constant energy per hop signaling. The

performance of several different types of diversity combining receivers, including the

conventional receiver, utilizing constant energy per hop is simulated for Rayleigh fading

channels in [Ref. 7].

Motivating this thesis is the uncertain degree of improved performance offered by

more elaborate receiver designs, such as the noise normalized receiver, over the

conventional receiver for variable data rate systems. [Refs. 3, 4] The expense and

complexity of a more elaborate receiver may not be justified in some circumstances when

utilizing a constant energy per hop system.

The constant energy per hop scheme is of practical value because it allows the

potential for an adaptive signaling scheme in which the sender and receiver can optimize

the data transmission rate. In poor environments, diversity can be increased at the

expense of lowered data rate. In favorable environments, the level of diversity, L , can be

lowered to accommodate a higher data rate. These adaptations will ideally not require

any hardware modifications and will be transparent to a channel observer. With this

adaptive scheme in mind . this thesis examines the improvement otffered by varying the

level of diversity possible when the jammer is sub-optimal.

7



D. TONE INTERFERENCE

Another type of narrowband interference is tone interference. This can consist of a

single interfering or multiple interfering tones. In this thesis, a performance analysis for a

FFH/BFSK receiver without diversity over fading channel conditions similar to those

assumed for noise interference is considered. Since the interfering tone or tones are

signal-like in nature. they too can suffer multi-path effects. This analysis considers the

effects of fading on both the signal and jammer. In a FFH/BFSK system an intelligent

jammer can potentially cause more degradation by splitting his available power over both

the signal tones. The degree of communication impairment of the single tone interference

per hop versus two interference tones per hop strategy is also considered. Clearly, the

greatest performance degradation occurs when the interfering tones correspond exactly to

the various frequency-hopped symbol tones. Tone jamming where the tones do not

correspond exactly to the various frequency-hopped symbol tones are not considered in

this thesis.

8



II. PARTIAL-BAND NOISE INTERFERENCE

A. SYSTEM DESCRIPTION

The partial-band noise interference, either intentional or unintentional, considered in

this thesis is modeled as additive Gaussian noise and. when present, is assumed to be in

all branches of the MFSK demodulator for any reception of the dehopped signal.

Thermal noise and other wideband interferences which are also assumed to corrupt the

signal are modeled as additive white Gaussian noise. Only the signal is assumed to be

affected by channel fading. The smallest spacing between frequency hop slots is assumed

larger than the coherence bandwidth of the channel, hence, each dehopped signal fades

independently [Refs. 2.8]. As discussed in the Introduction. the signal bandwidth is

assumed to be much smaller than the channel coherence bandwidth, and the channel

coherence time is assumed to be much larger than the hop duration or, equivalently, the

hop rate is assumed to be large compared to the Doppler spread of the channel. The first

assumption implies that the channel is modeled as frequency-nonselective, while the

second implies that the channel is slowly fading. The signal channel is modeled as a

Ricean fading channel, hence, signal amplitude is a Ricean random variable [Refs. 2,81.

For Ricean fading, the total signal power consists of a direct signal component and a

diffuse signal component, and the strength of the fading channel is characterized by the

ratio of the direct signal component power to the diffuse signal component power.

9



The symbol rate is R,. For MFSK with M order modulation, the corresponding bit

rate is .jt - log , (M) . For L hops per symbol, the hop rate is Rh = LR,. The spread

spectrum bandwidth. W. is considered very large compared to the hop rate.

B. PARTIAL-BAND NOISE JAMMING ANALYSIS

i. Problem Development

The partial-band noise interference when present is assumed to be in all branches

of the MFSK demodulator and affects each chip of the dehopped signal with probability y

where y is the fraction of the spread bandwidth being jammed. Hence, the fraction of the

spread bandwidth not being jammed is I - y. If the average power spectral density of

the interference is N1/2 over the entire spread bandwidth, then the power spectral

density of the partial-band interference when present is N, /2y. The power spectral density

of the thermal noise and other wideband interferences which are modeled as additive

white Gaussian noise is N/2. Consequently, total noise power spectral density is No/2 in

the absence of partial-band interference; otherwise,

NT LI,(N.) (6)

is the total noise power spectral density when narrowband interference is present.

If the equivalent noise bandwidth of each detector branch in the MFSK

demodulator is B Hz, then the noise power received in a given hop is ao= oT =NoB

with probability I1-y when no jamming is present. When jamming is present, the total

noise power in a given hop k is =c 2 T +a~r= +r

10



We assume that each receiver hop slot has the same noise equivalent bandwidth. The

noise equivalent bandwidth of the receiver investigated in this thesis is B=R,.

2. Probability of Bit Error

When partial-band interference is present the probability of symbol error for a

MFSK receiver is

PS= L ( (l - y)L-,p)(i) (7)1=0 i)

where P5(i) represents the conditional probability of a symbol error given that i of L hops

of a symbol are jammed. Since each signal branch of the receiver is symmetric with the

other branches, we can determine the probability of a symbol error. P, by considering

the signal to be present only in branch one of the MFSK demodulator. The outputs of the

other branches are assumed identical and independent (iid).

For orthogonal MFSK the probability of a bit error is related to the symbol error

by

Pb= M .,(8)
2(M- 1)

The energy per bit as a function of the symbol energy and the modulation order is

Eh - Es (9)
10o2("



3. Probability of Symbol Error Under Partial-band Noise Interfere.,ce

Assuming the signal is present in branch one of the MFSK demodulator allows

us to write the probability of a symbol error based on the conditional probability density

functions that i of L hops are jammed.The conditional probability density function for the

output of the branch containing the signalis f%, (xI I i) where X, is the random variable

that represents the output of the signal branch. The conditional probability density

functions for the non-signal branches arefl-. (xm I t). m = 2, 3,4.... M where the X, 's are

the identically distributed random variables that represent the output of the branches that

do not contain the signal. [Ref. 3] The conditional probability of symbol error is

P,(i) = I - f.fi-, (X111)[ f.,(xI i)dxm, dx1 (10)

for all m * 1.

Since the partial band interference may or may not be present in a hop, we must

be able to differentiate between the two possibilities. Let the subscript n= 1. 2 denote that

hop k of a symbol has interference and has no interference, respectively. The diversity

summer acts to add together all L independent hops in its branch. Of those hops i of them

are jammed; hence, we can express the random variable at the output of the diversity

summer (10) as

A'.= X,,.= A*,,+ + A: m =l1.2.3.... A (il)
k=I k=k .- #

12



a. Probability Density Function for the Decision Variable X.

The probability density function of the independent, identically distributed

(iid) random variables Xmk, m= 2,3 ,....M that represent the demodulator branch outputs

not contairning the signal for hop k of a symbol is

fV.,(Xmk) 2 exp 2Ck'J U(Xmk) m =2, 3,..., M (12)

where u(9)is the unit step function. [Ref. 9]

The Laplace transform of (12) is

1 (13)
2 cakS + 1

Since each hop is independent, from (11), we can express the Laplace transform of the

conditional density functionfv, (xm.i) , as

FX'. (S1i) = S 11sl)], x [F,,(s 1)]' (14)

Direct inversion of (14) leads to an infinite series of confluent hypergeometric functions,

but this proved difficult to program and slow to execute. To evaluate (34) we first invert

the individual portions consisting of either all hops jammed or all hops not jammed. The

conditional density function for the decision variable is then obtained by convolution.

The Laplace transform pairs are

_- -I (X 1) u(x) (15)
F,%..,:=>(0- 1)! exp (2 -Xl

and

13



""- eU(X) (16)

where Gk,- and ok., represent the noise power in a hop experiencing interference and a hop

experiencing only thermal noise, respectively. To recoverfv.(x.) , the two m-Erlang

random variables above are convolved. Hence. the inverse Laplace transform of (14) is

obtained from a convolution of the individual right hand sides (RI-IS) of (15) and (16) as

1Pt1-M _xp (x,.-d-t-(1-)(F e (L-i-I
f(,. (XIi) =" -2 •, I-.)exP exp )X(2 12dt (17)

Applying the binomial theorem to the integrand of (17) and defining

12- 1 (18)

k2(L-i- )!(i- 1)!

we can express (17) as

fM,.(xm_1) = I- "--k di (19)
k I 2o, 2

Interchanging the order of integration and summation and integrating term by term, we

get [Ref. 10, equation 3.351.1]

L I ( L- i - I + )!x,,
f(m)XxI (I (20)

k- k I-0 (k+i- I [)!(a

where for brevity

a 2 (21)

and

14



-272 (22)
cak2

The special cases of all hops jammed (i=L) and no hops jammed (i=O) are

obtained directly from (15) and (16) respectively, since the analysis leading to (20) is not

valid in theses cases. The remaining task is to evaluate the cumulative distribution

function of fx,(x.,i) that is required for computing the probability of symbol error, (10).

The computation required for the non-signal branch contribution to the probability of

symbol error is gm-fx.(X,). There are two avenues to compute this, the first based on

direct integration or, equivalently, the second based on an inverse Laplace transform of

Fx(s l0s.

Directly integrating (20), valid when 0 < i < L, we have

fmf y. (x.,,i)dx,, = (i TLS- I) (-o 1 (-)' --

x1-i I -k -Li)-1-k-p x
x(k +- 1){ (L- i - -1k)!{ 13.-,- exp (-3x,,) (L Xi-n !(a - ~k~i OL-tI p-o (L - i -- I --' -p)!PP+'

(L i I) IIL-2-m L-2-1-q
,- (-i1)1 -exp (-=m.x,) Y ( 2 ) q+} (23)

i=o (k + i- I - 1)(a--.-(3)1- aL-1-1 (L q= 2-l-q)0

This equation is simplified by expanding the binomial coefficient and canceling like

terms to obtain

15



"fx,.(x . i)dxm 1 (k + i 1)!( _ _ _

(1- 1)! k-0O k! (l'P-a

L-t-I-k 1P3t-, k+,- I (L - 2 _-/)!(-1)k-1-1

lexp (-1Ox,,) Y. (2: )
P--o P ! 1Li l - ) =0 (k + i - I - ) m([ - 1O + o t - - -

[ ~ L-2-1 (CLXm)q-F - exp (-ax,.) P! (24)

when 0 < i < L. For the case of all hops jammed, i = L, the cumulative density function is

'f(f. Ix = f x

(L - 1)! 2a- -

=1-exp 2 OF---7 0kI2QD (25)

and for the case of no hops jammed, i = 0, it is

X L-I X)

I---x---(72 E (26)I)-O ! 2a2~

: -ex 2-k22 JA0.2h

A final useful form is obtained by making the linear transformation of the random

variable X.. Recognizing that a = -i and P 1 2.then
2a2 2c2

a 2 Nr, (27)S2c•

Then making the change of variables y P•xm in (24) we get
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-I (k• 1)! (NT)Fr0'] = ( - O n)( *(-1)i(NT-

L-i-I-k yP 1 N)Ik+i-l L 2

p-y=o P! (L-i)! 1=o (k+i'- l-)!(NT-l1)

Y) ) q1-epp,- r) Y,--0 q (28)

which is useful for numerical integration purposes. Applying the same substitution in (25)

and (26), we get

Fy(yIL) = 1 - exp {-y} T k (29)

and

Fy(ylO) = 1 -exp{Iy (30)

for the case of all hops jammed and no hops jammed, respectively.

Previous efforts to determine the cumulative distribution for the non-signal

branches, the second technique, is based on a numerical inverse Laplace transform of the

function - x Fx,,(sli) [Refs. 3, 4]. Despite the finite sums of exponential-like terms in

(28). this second method proved more accurate for large values of L.

b. Probability Density Function for the Decision Variable X,

Continuing with the assumption that the signal is present in branch one of the

MFSK demodulator accompanied by Gaussian noise , the random variable X, is described
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by the conditional density functionfI, (xII i). Given a signal amplitude of 2 ak and

before diversity combining, the probability density function of X, is

"fA" (xI klak)= 2 exp 2 10( 2 I uIk) (31)

where IO(-)is the modified Bessel function of the first kind and order zero. The channel

is assumed to have Ricean fading; therefore, ak is a Ricean random variable with a

probability density function given by

_ -(ao + c 2
fA, (ak) = -jex 46 u(ak) (32)

(T 2ay2  C

where cc2 is the average power of the direct signal component and 2a2 is the average

power of the diffuse signal component [Refs. 2, 11]. The total average signal power of a

hop k of a symbol is a 2 + 2a 2 and is assumed to remain constant from hop to hop.

The random variable XIk when hop k of a symbol has interference and no

interference is denoted by Xik, and Xik2 respectively. The conditioning is removed by

integrating the product of (31) and (32) with respect to ak from zero to infinity with the

result

1(XI_ exp -i x1,, + 2a 2 ) ,]J (33)
S2(6, + 20a2) e [y .,+ 2& j aY2 + 2& 33
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for XlIk > 0 where o3k implies a jammed hop and ak2 implies no jamming. Since each

hop is independent, from (11) we see that the Laplace transform of the conditional

density function for the signal branchfvx (xI Ii) . is

Fx, (sIi) = [Fx, (s I)]' 9 [Fx, (sIl)]L-i (34)

The Laplace transform of the density function describing a single hop, fx,,(xlk) , is

F ,"k(s) = (S + .k) exp (2Pk,, (35)

where

P k,,(36)
2(2a2 +2")(3

When(35) to the c,, power and the inverse Laplace transform is taken, the result is

equivalent to taking the c,, fold convolution, denoted by c,. Letting c, = i and

c, = L - i, so that elements subscripted with a I correspond to jammed hops while

elements subscripted with a 2 correspond to hops experiencing only thermal noise, then

(c,,-I)/2
[f(lk)]®c k"Xlk

(2C 2 )(cn-1)12
×ex [-3k.xt, + c~o2)]x l.-i(2c3,,t 2)}

X~,2cc12)1X _(21k,,12c,,o xi,, )u(xiA,,) (37)

where 1, 1 represents the modified Bessel function of integer order c,,- 1. (Refs. 3. 11]

Unlike the case of the non-signal branch analysis, no analytic solution for the final
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convolution for the decision variable X, has been found. Symbolically, the probability

density function for X, at the output of the diversity summer is described by

fx(x I") = [fxlk, (XIk 11) [f"',(XIk2 Iz)]O- (38)

C. NUMERICAL EVALUATION OF PARTIAL-BAND NOISE JAMMING

For levels of diversity up to L= 20, the conditional probability of symbol error is first

computed based on the signal energy-to-thermal noise power spectral density ratio,

signal-to-jammer power spectral density ratio, signal fading direct-to-diffuse ratio, and

fraction of spread spectrum bandwidth jammed. These input parameters form the basis

for the probability of symbol error which is converted to probability of bit error using

(8). To summarize

kc 2 direct signal power/hop
G. - noise power/hop

2G2 diffuse signal power/hop (40)
=k2 noise power/hop

Eb average energy per bit
N, thermal noise power spectral density

Eh = average energy per hop
Nj interference power spectral density

Rb= ( a2 (43)

and 0.0 < y• - 1.0.
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The computation of the probability of symbol error is achieved for each L by

weighting and summing the probabilities of symbol error conditioned on i of L hops

jammed. A numeric integration is performed over the product of the signal path

contribution and the non-signal path contribution (10).

1. Non-Signal Path Contribution

The cumulative distribution function is computed using the analytic expression of

finite summations given by (28) for 0 < i < L for small L. However, it is computationally

faster and results in less round off error for large values of L if a numerical inverse

Laplace transform is performed on 1 x Fa,,(sli). The special cases of all hops jamnmed

(i=-L) or no hops jammed (i=0) can be computed directly from (25) or (26), respectively.

The convergence of the inverse Laplace transform is accelerated by the Euler

transformation [Ref. 12] usually taking about 60 terms to reach relative errors on the

order of 10-9. However, certain combinations of input parameters results in slower

convergence. The inverse Laplace transform algorithm is limited to not more than 1000

iterations.

2. Signal Path Contribution

For the special cases either of all hops jammed or no hops jammed. the required

probability functionfx,(xi It') is given by (37). In the case of all hops jammed n=l.

c, = L, and c, =0, and in the case of no hops jammed n=2, c, = 0. and c, =L. In both of

these cases. (10) can be solved analytically, but the results are so complex that numerical

evaluation is easier and more straightforward. When i * 0 and i # L,(38) is evaluated by

21



the numerical inversion of (34) after which the probability of symbol error, (10), is

evaluated numerically.

The partial-band jamming fraction that yields the worst-case performance for the

conventional receiver is obtained experimentally by computing the probability of bit error
Eh Eh

as a function of y for fixed values of Eh and L-h. To cover the broad range of channel
No Nj

fading severity, results are obtained for several values of the direct-to-diffuse ratio. For

weakly fading channels, exhibiting a strong direct signal component, a direct-to-diffuse

ratio of 100 is used. This is essentially a Gaussian channel. For strongly fading channels,

considered as nearly Rayleigh channels, a direct-to-diffuse ratio of one is used. Typical of

a moderate Ricean fading channel, a direct-to-diffuse ratio of ten is used.
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D. PARTIAL-BAND NOISE JAMMING RESULTS

To determine the worst case partial-band jamming performance of the FFH/MFSK

receiver the probability of bit error is computed as a function of y. The process is repeated

for levels of diversity up to twenty, which represents the upper end for practical systems

in today's technology. Figure 2 through Figure 9 display the probability of bit error for

various levels of signal-to-noise ratio, total jammer power, and modulation order. The

figures are calculated with the assumption that the signal direct-to-diffuse ratio (Rb) is

constant during a hop duration. Figure 2 demonstrates the performance for moderate

signal-to-noise ratio with a near Gaussian channel. The signal-to-thermal noise ratio,

Eh/No, is the signal energy contained in one hop for a conventional BFSK receiver. The

table below summarizes the cases displayed in Figure 2 through Figure 9.

TABLE 1. PARAMETERS FOR WORST CASE ANALYSIS
FIGURE Eh/No dB Eh/Nj dB Rb / Ricean Fading

Figure 2 13.35 3 100 /Very Weak

Figure 3 13.35 3 10 / Moderate

Figure 4 1335 10 100 /Very Weak

Figure 5 13.35 10 10 / Moderate

Figure 6 16 3 10 / Moderate

Figure 7 16 10 10 /Moderate

Figure 8 20 3 1 / Strong

Figure 9 10 0 i / Strong
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Figure 2. Worst Case Partial-band Jamming
Eh/No=13.35dB, Eh/Nj=3dB, Rb=100

The surprising result is that despite increased levels of diversity, the performance

does not greatly improve. There will be more to say about this later, but the same trend is

observed in Figure 3 where there is Ricean fading of the signal.
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Figure 3. Worst Case Partial-band Jamming
Eh/No=1 3.35dB, E/N^=3dB, Rb= 10

Another, surprising result is that increasing the modulation order to four or eight

does not provide much improvement. Figure 2 and Figure 3 display pessimistic

performance from the communicator's viewpoint. However. they assume a high level of

jammer power. We next investigate the performance when the jammer power is just one

tenth of the communicator's power when L=I ( Figure 4 and Figure 5). Since we are

assuming 1000 hop slots. this is equivalent to assuming a signal-to-jammer power ratio of

-20dB for BFSK with no frequency-hopping
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Figure 4. Worst Case Partial-band Jamming
Eh/No-= 13.35 dB, Eh/NJ= OdB, Rb= 100
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Figure 5. Worst Case Partial-band Jamming
Eh/N= 13.35dB, Eh/N= I OdB, R= 10
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A comparison of Figure 4 with Figure 5 illustrate the influences of Ricean fading

on the probability of bit error when the communicator enjoys a significant power

advantage over the jammer. Next we consider a situation where the communicator has a

larger initial signal-to-thermal noise ratio, i.e. 16dB, to see if at higher levels the jammer

could mitigate the effects of diversity with partial-band noise jamming. Figure 6 and

Figure 7 display these results.

Pb
0.250

M=2 M=4 M=8
0.200-

0.150

0.100

0.050
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 1920

Number of Hops

Figure 6. Worst Case Partial-band Jamming
Eh/No= 16dB, Eh/Nj=3dB, RI,= 10
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Figure 7. Worst Case Partial-band Noise Jamming
Eh/No= I6dB, Eh/NJ;1OdB, Rb= 10

To examine the extremes of channel fading on the received signal, the case of

near Rayleigh fading is examined with a direct-to-diffuse ratio of one. Since fading is

severe, we would expect poor performance even without jamming, but with some

improvement added by the increased diversity. The signal energy per hop is examined at

20 dB (Figure 8) and at 10dB (Figure 9).
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Figure 8. Worst Case Partial-band Jamming
Eh/No=20dB, Eh/Nj=3dB, R&=I
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Figure 9. Worst Case Partial-band Jamming
Eh/No=l OdB, Eh/N.=OdB, Rb= l
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In both Figure 8 and Figure 9 the improvement offered by diversity initially

lowers the probability of bit error, but not to the extent that it can overcome the errors

introduced by partial-band jamming. It should be noted also that the high

signal-to-thermal noise ratio is received after passing through the near Rayleigh channel.

Therefore, it has a diffuse signal component equal to the direct signal component. This

represents a very poor channel for the communicator that is further degraded by

partial-band noise jamming.

The conclusion to be drawn from the preceding series of performance plots is that

for a wide range of signal-to-thermal noise level, jammer power, and channel conditions,

the increase in diversity in the FFH/MFSK receiver alone is not enough to overcome the

effects of partial-band noise jamming acting in concert with multipath effects. The

critical parameter then is the fraction of the spread spectrum bandwidth, y, over which the

jammer power is spread. The Figures 10 through 17 demonstrate the fraction of jammed

bandwidth that provides the worst case probability of bit error.
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The worst case values y are determined by computing the probability of bit error

as a function of ,. Figure 10 through Figure 17 show that, in general y, depends on the

hop energy-to-thermal noise ratio (Eb/No ), the hop energy-to-jammer power spectral

density (Eh/Nj), the level of diversity (L), the modulation order (*), and the channel

fading direct-to-diffuse ratio. Further, the shape of the worst case y is generally the

same, showing an initial drop as L increases with a gradually lowering slope. It is

important to note that the lowest levels of y are still above 10' which represent only one

jammed hop slot when there are 1000 hops in the frequency-hopping system.

That the increase in diversity is unable to mitigate the partial band jamming is

also indicated by looking at the trend of performance for fixed values of y. Figure 10

through Figure 17 show that performance improves linearly as diversity increases. This

is not unexpected since the constant energy per hop system increases the total energy per

bit as diversity increases, however, the change in slope of the performance curves is

indicative of the effect contributing to the worst case analysis. Figure 18 through

Figure 23 display the performance for fixed values of T.
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Figure 18. Performance for fixed values of gamma

Eh/NO=13.35dB, Eh/Nj=lOdB, Rb=10

Figure 18 displays the performance in a moderate Ricean fading channel where

communicator enjoys a fair signal-to-jammer power advantage. The performance

improves linearly as diversity increases. However, the slope of the performance curve is

significantly reduced for decreasing values of y. Further, we can see that for a given L

there corresponds a worst case value for y which becomes less sensitive as diversity

increases. Figure 19 displays the performance when the signal enjoys less power

advantage relative to the jammer. The trend is that for lower signal-to-j ammer power

ratio performance improves more slowly.
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Figure 19. Performance for fixed values of gamma
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The worst case fraction of bandwidth jammed is influenced by channel fading

(Figure 10 through Figure 17). Likewise, the slope of the performance curves is

influenced by channel fading. As the fading becomes more severe, i.e., near Rayleigh,

the performance improves more slowly as demonstrated in Figure 21 through Figure 23.
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III. MULTI-TONE INTERFERENCE

A. SYSTEM DESCRIPTION

In addition to partial-band noise jamming, spread spectrum communications can

experience tonal or narrowband interference in one or more hop slots. We can similarly

expect that as spread spectrum bandwidth grows the likelihood of tonal interference will

also grow. This interference may arise from hostile sources as well as non-hostile ground

communications, satellite transponders, and radars. The multi-tone interference problem

is similar to the partial-band noise problem.

This chapter analyzes the probability of bit error arising from an "intelligent jammer"

who knows the spread spectrum bandwidth, W, and the modulation order. This

intelligent jammer is able to place a single interfering tone in one or more hop slots, but

has no knowledge of the pseudonoise (PN) sequence driving the hopping pattern. This

represents a very intelligent jammer. We then relax this situation and compare it with the

performance of the jammer who places an interfering tone in none, one, or both of the

symbol tone locations in a particular hop slot.

It is likely that the interfering tones may experience multi-path effects in a manner

similar to the signal tone. However, since the interfering tones and signal tone can arrive

from different paths, the interfering tones will in general arrive at the receiver with a

different direct-to-diffuse power ratio from that of the signal. In this thesis, the

performance when both the signal and the jammer experience fading is evaluated.
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B. MULTI-TONE INTERFERENCE ANALYSIS

1. Problem Development

First we consider the case where the jammer places at most one tone in each fast

frequency-hop slot. Only the worst case situation where the jamming tones exactly

coincide with frequency-hopped symbol tones is considered. The situation may be

visualized with the aid Figure 24.

FFH/BFSK
N slots

1 2 3 4 5 N-1 N
see

dW W

1 2 3 4 5 N-1 N

Iq tones jammed

Figure 24. Multi-tone interference in FFH/BFSK

The FFH/BFSK receiver is a special case of the FFH/MFSK receiver described

earlier. The orthogonal design is selected such that 'W b is the system bit rate and each

signal tone is placed .'Wb apart. In Figure 24 the bandwidth of a single hop. B, is 2.'A'b

The spread spectrum encompasses W Hz and is divided into N hop slots. Although

numbered consecutively for illustration, the pseudonoise modulation will create a
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random-like sequence to the hopping pattern. In this thesis, N= 1000 is choosen as a

representative number of hop slots. Further, the number of interfering tones, q, must be

an integer

I <_ q •5 N (44)

Since the jammer spreads his available power, J, equally among q tones, each

interfering tone has a power of Jq = J/q. Earlier work focuses on the simplifying case

of no thermal noise [Ref. 13]. In the no thermal noise case an error can only occur if the

hop is jammed and the the interfering tone power is larger than the signal power. In this

instance the jammer can make most efficient use of his power by choosing the number of

tones to jam as

q =INTG[P] (45)

where P, is the carrier power of the desired symbol and INTG[ ] represents the greatest

integer less than the argument. [Ref. 13, pp.596-598] In this thesis. the probability of bit

error is obtained using fixed values of q to determine a worst case scenario which

includes the effects of both signal and jammer fading as well as thermal noise. The

approach to this problem is to first detemine the probability of bit error for a conventional

BFSK system without frequency-hopping and then generalize those results to the

FFH/BFSK system.
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2. BFSK Analysis with Single Tone Interference

For the binary case we begin with the familiar expression for the probability of

bit error for the noncoherent FSK receiver

Pb = Ps, x PrR 2 > RiIsi]+ P5 , xPr[RI >R 2Is2] (46)

where R, and R2 represent the demodulator outputs of the branch detecting signal s, and

S2, respectively. Making the assumption of equally likely signaling, we have

1S2= (47)

and

Pb I[P,(R 2 > Ri)+ PA(RI > R2)] (48)

The received energy consists of signal energy, thermal noise, and, ifjammed, the

interference signal

r(t) = si(Q) + n(t) + sj(t), (49)

where s, is the ith signal tone, s_, is the interference tone, and n(t) is additive white

Gaussian noise with power spectral density N. / 2. Since the receiver structure is

symmetric, we can simplify the analysis problem by considering the case where branch

two is jammed.

First we examine the case where the signal and interference occupy different

frequencies. Then

P,(errorls1) = P,(R2 > Ri Is1) (50)
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We express the received waveform as

r(t) = J-accos (o II + 0) + ýi aJcos (0) 2t + Oj) + n(t) (51)

where ac and aj are modeled as Ricean random variables. As previously discussed the

received amplitudes and phases of each tone is a random variable due to multipath

effects. For the noncoherent detector design, the output of each branch can be expressed

as a non-central Chi square random variable [Ref. 2]. For the signal branch

1a [(r, +2a2T7)
fR , (rI la, s1)2exp 2f I I[a-Tb ]u(r) (52)

and for branch two containing the interference tone

r +2a b)1

fR2 (r2ia.,s) = 2I- expj 10[ 2ai~bV -2 ]u(r2) (53)

where C2 = NoT,. The probability of error (50) is

P,(R2 > R1lac,ajis1)= o rR IfRR2 (rIr2IaJ, ac,sI)dr2drl (54)

This represents the n-"obability conditioned on the amplitudes of ac and aj. The

orthogonal receiver structure and independent fading of the interference tone and the

signal tone allow the joint probability density function to be separated. Hence. (54)

simplifies to

P,(R2 > Ris,)= •fR,(r, lac, s,)[ fR 2(r2lai, s,)dr2]dr, (55)
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The evaluation of (55) is simplified by applying the quadratic transformation to convert

(52) and (53) to Ricean random variables [Ref. 11]. Ifr1 = v, then dr _-= 2vj. Using
dvI

this substitution in (52), we obtain

fvtvlacsj)=-Lexp{ (v Ta 2ov ]u(Vi) (56)
f as 2(12 exp - 2

Similarly for the branch output containing the interference tone

fv,(V2 •ajsj)=-2a2 exp{ 2 Io u(v2) (57)

Now (55) can be expressed as

Pr(V2 > V1 Is) = jfv,(v, ac~s,)[ffv2(v2iaisi)dv2]dv1 (58)

The inner integral equation has no simple solution, but is represented symbolically as

Marcum's Q function which is defined as [Ref. 14]

Q(vt, 13) = vexp i-(v2 + a2)Io[otvldv (59)

Hence, (58) is expressed as

p,(v2 >v1IS,)= O f-2ajTb/0`. ×` exp ( I +_2a_2 7IoL 0 dv1 (60)

which can be evaluated to obtain [Ref. 151

>7 (61)
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Equation (58) represents the contribution to the probability of bit error when the signal

and jammer occupy different tones within a hop. It remains to determine the contribution

due to a collocation of interfering and signal tones. That is

Pr(error Is2) = Pr(RI > R2 Is2) (62)

where

fR,(rI)= I - exp u(r,) (63)

Since the signal and the interference are in the same tone location, the output of

the in-phase and quadrature portions of branch two due to signal and jamming tones is

J2 Tb [accos (0) + ajcos (0j) (64)

and

J2 Tb[acsin (0) + ajsin (0j)] (65)

respectively. The phase of the jammer is generally different from that of the signal.

Squaring and summing to form the branch output produces

R2(0 - 0j) = 2T2b[a•2 + a + 2a a.,(cos 0 cos 0, + sin O sin O ] (66)

which is simplified to
72 2 2(7

R2(8)= 2Tb[aC + + 2a~ajcoss] (67)
2 O -

where 8= 0 - 0j. Now, replacing 2a,2T•2 with (67) in (53) we get

fR2 (r2p lac,2aJTa, 2) exp { [L 2r2(a± a3) lu(r2) (68)f R 2 a • a ' ' 2) = 2" -- 2cr2 Cy 2L C'- +

Now,

48



PI(RI > R 2 IS2 6) -_FA, (r2laCaj,6,S2 )X [1R2 (r IIS2)drIdr 2  (69)

Thus, the probability of error arising from collocation of the jammer and the signal is

computed from a probability density function conditional on 6. In this case the

non-signal branch is unaffected by the jamming tone. Substituting (63) and (68) into

(69), we get

Pr(RI > R2Is2,6) = x exp{__b(a2 +-a 22acajcos8) (70)

This can be simplified into familiar terms by replacing

2
2a b 2 Tb Eb

a a- -• = 7b (71)2 ac N0  N,

and similarly for the jammer power term

2 bT = 2 Tb Ej (72)

a~ -i ajN0  N,

Then the conditional expression in (70) then becomes

Pr(Ri > R 2 Isl,8) W()exp{ (Yb +y + 2 J/Y'J cos6) J (73)

The nuisance parameter 8 may be removed by multiplying by its probability density

function and integrating the conditional density. That is

P,(R1 >R 2 Is)= _L 1 expI::'(Yb + YJ + 2 Y Cos8) A (74)
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where 8 is modeled as a uniform random variable. Since the integral is only over 8, then

[Ref. 10]

PR 4 J2II x 1(b+7)X- o 71exp f /YbYJ Cos 6 1d8 (75)

which can be evaluated to obtain

Pr(R I > R 2 IS1) W x exp {-(Yb + 7J)} x 1 Y (76)

Therefore, the phase relationship between the signal and the jammer plays a significant

role as evidenced by the modified Bessel function term. This makes physical sense.

When the phase is the same or nearly so there is reinforcement of the signal tone by the

interfering tone, but when the phase difference approaches 180 degrees there is

destructive interference.

This allows us to compute the probability of bit error in the absence of fading by

substituting (61) and (76) into (48).

Pb(ac, aj)=lY[1,Q( aJ(- b, _C

+exp -74 (a 2 +a 2) }oaa7]](77)

An equivalent expression using (71) and (72) is

PA(Yb,YJ) I{ - Q(1Yb ,Ff7) + Q(T.FlT Jb) + expj4(7b +YJ)}Io[ Iyby] (78)

Using a Q function property [Ref. 15, pp. 396], we can reduce this to an expression

containing just one Q function as
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x QL o=j~ J~a,~
Pb (aaJ) = (2 y a(79)

-[I[ xiT exp{Z-T~b(a 2 +a2)} (79)

Now, the amplitudes of the received interference tone and signal tone are Ricean random

variables where

f(a) = x a 10 aj'-j u(aj) (80)

fA/(ac) =ac J-± exp } o10F u(,cl) (81)

Where in each case the second moment can be expressed as

aI = +2cr2 for i= J,c. (82)

We first remove the conditioning on a, in (79). The technique is to take each piece of

(79), multiply by (81), and integrate over all possible values of ac. Hence, for the first

piece

aiTh J'}Fa c~cdc T

,(C;l Cy FA (acd

Fa1 b c~,ýL ep ý a X10'JaI a (83)exp - - xo a--
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(T bu I Q c Ib a I b

a2Tb (84)

The integral of the product of the second piece and (81) is

jexp --- b_(a 2 +a 2) o[ 4c 1 x ih a2 + ojcI -i-[ ac 'dat. (85)

Making the substitutions

Tb 1 , aJTb, andE .. q~

=-+ -- B= a2 andr =c-,then
2a2 2a' 2 Y2 

'Y

B r-r2  aj 374 + (a+ 2a 4aF- 4a 4  T + 2 C (86)4& 4a~c 2Y 2a +C2

BF- icib (87)
2& Taba2 2

in (85), we can use [Ref. 10, equation 6.633.4] to obtain

__7___ -T + a2)
a _ Ix x l0 , (88)Ta 2 +(7 2  2Tboa + 2C 12 T2 + C2

for the second piece of (79). The remaining piece to be determined is

fexp (a2+a2 -exp a2c + t2c J[ o -da (89)
0 ~2a2 J)I C 2 2,U2 ; L25

52



Using [Ref. 10, equation 6.631.4], we evaluate (89) to obtain

2 2 exp -L2 2(Tb + a (90)
T7b ac +a2 2a22(72a2 + Cr j

Finally, combining (84), (88), and (90) with (79), we get the probability of bit error when

the signal experiences Ricean fading as

2 5 2~ T 2

Pb(aJ)=( 7 1+

2(a~i+2 )7I ja 2 +a2' a T2 +.a 2 +

4(TC b + a 2)exp 2 )

22 I [aja • (91 )-2ex2 2(TTa2+a2) T(a•+

which is now conditional on aj. Expressing (86) in terms of

(CT2 a2 + C,2 (92)

2 2

2(72 T_ 2p ccT , (93)
b 0 2  N+

and the direct-to-diffuse power ratio
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Rb-A- ý 94
4b 2a'94

we get

PbaJ 4~b/2 [1 -
2-b 2a , h/a21+

(4b +2)[ ýb +2 ~b + 2

12Q 2ajT~bIa2 2 ýb I 1 ___

2(4b + 2)~ Q 4+2 ~,4b + 2)+24 )epý(b+2

-aJ a2 exp /2 xI1 ajV/Tb/a~c (5
[VP2j -ept b+2 4 ~b+2 J

Using [Ref. 15]

Q2aJ b/C& 2 ýb NiQ 2ýb 2ajT/a +
4b2'4b+L) 4b+ 2  4b+2 )

J(2cz2T 2/y2 + 2ýb L ___

exp 2  4+ 0 [ýb±2ja~b (96)

in (95), we obtain

Pb(aJ) = - F2ý 2a.1 T//a2 + I( ,b 2  I }l IX

[exp {-ajT/a + ex { (aT~ }(4 +21xj) y4 2)Jb (97)
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We now employ a similar approach to remove the conditioning on a_. Integrating

the product of (80) and (97) over all possible receiver jammer amplitudes, a j, we get

P b24b 
_ _ _ _ _

P+ 2[1 (4b+ýJ+2)' (4b +ýJ+2)

(,j+2) _exp{-(b _ 2+ ýJ" ' 1 (98)

2(4b+4J+2) ¥ J 4 ×10 b+4j+ 2

where

2~T _ Tb
41 =j T(99)

a 2  No

=_ 25T• _ 2aTb (100)

a 2  No

(X 2

R ' = J (101)

An alternate expression for the probability of bit error in the case of both signal and

jammer fading in terms of weighted Q functions is

Pb~lQ(I kb+4.1+ 2 2 1)]+

IFQf __ _ 2ýp C+ J X 101 (102)

However, since there is no closed form solution for the Q function, in practice it is easier

to compute the performance using (98).
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a. Special Cases of BFSK with Single Tone Interference

The final aspect of the analysis is to consider how the derived result

simplifies for special cases, both as a check on earlier work and to see limiting cases. As

check on (98), when there is no signal the probability of bit error reduces to one half as

expected.

Next consider the case of no jamming. In this case, = = 0, and the

probability of bit error reduces to

Pb x b+2 - j (103)

which is the usual BFSK result.

Another limiting case is the performance when both the signal and the

jammer experience Rayleigh fading. In this case both ýb and • are zero and all the

received energy is in the respective diffuse component. In this case (98) reduces to

Pb = 1(b+4j+2D (104)

This displays an inverse linear relationship similar to Rayleigh fading without jamming

[Ref. 2]. Performance is improved if we change the case slightly to that where the

jammer suffers Rayleigh fading while the signal experiences Ricean fading. Then

Pb=2•( +•j+2 ) xexp { } (105)

Here any direct signal component that reaches the receiver will serve to drive the

probability of bit error lower in an exponential fashion.
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Perhaps the most optimistic performance from the communicator's point oi"

view is when the signal has no fading, but the jammer suffers Rayleigh fading. In this

case, ý = ýb =0, and (98) reduces to

Pb () exp { '+-b } (106)

On the other hand, the most pessimistic performance is likely to occur when

the signal suffers Rayleigh fading, but the jammer has no fading. In this case,

S= ýj = 0, and (98) reduces to

e1p 1 (107)
Pb= 2 1 exp -1J I

IL(4b + 2 ) 14b j2

This performance will be very poor unless there is a relatively large amount of diffuse

signal energy received.

3. FFH/BFSK Analysis with Multi-Tone Interference

We now turn our attention to the application of (98) to spread spectrum and the

partial band multi-tone jamming scenario. Suppose N is the number of hop slots in the

FFH/BFSK system and the jammer transmits q interfering tones. When we credit the

jammer with only placing at most one tone per hop slot then

Y = (.i)(108)

is the fraction of spread spectrum bandwidth jammed where y is restricted to

I < 7:5 1.0 (109)
N

Now,
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( q ( N-q) ,errhp o amd
P () Pr[errorlhop jammed] + Pnot jamned]

where

P,[errorlhop not jammed] = Pr[errorlBFSK] = I - b (110)
4~b +2 ý1, + 2j

To apply our earlier result for the BFSK receiver we must define our jammer parameters

on a per hop basis. If ý, is the average total jammer power, then the average total

jammer power per hop is

yO Y Y. (111)

which implies 4, and j are replaced by N~j/q and Nýj/q , respectively, in (98). Now (110)

is given as

2ýb b+ +2% J]2 4b+ J + b+-,,,
N 'x N + 0 A

P 4b + 1 + 2 4 + eJ + 2 4b + 74 + 2

+(N-q• 2 ( . +2 exp{-( ' -) (112)

In the case of FFH/BFSK with one hop per bit, no fading. and no thermal noise

(No=O), an analytic expression for the worst case number of jamming tones, qo, is
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1: INTG (--) =-q,<N (113)

One aim of this thesis is to determine if this limited analytic result for q. remains true for

FFH/BFSK over Ricean fading channels in the presence of thermal noise. This is

accomplished by comparing the performance based on qo and some offset values of q.

4. FFH/BFSK Analysis Allowing Two Interference Tones

We now extend the previous results to a situation which includes the possibility

that both receiver branches contain an interfering tone. This is a relaxation of the

intelligent jammer scenario employed thus far. In this situation, the probability of bit

error may be expressed as

Pb = P,[no hops jammed] x Pr[errorlno hops jammed]

+Pr[one tone jammed] x Pr[errorlone tone jammed]

+Pr[two tones jammed] x P,[errorltwo tones jammed] (114)

The first two conditional probabilities were previously determined in Section 2.

However, the probability of those events occurring is a sample without replacement

situation. That is

P,[one tone jammed] = P,[one tone jammed n one tone not jammed]

P4[0 tone jammed II tone not jammed] x P4[I tone jammed 10 tone not jammed]
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q q- l J = q).2N-• ) (115)

2N_2-_1 (2N YN- 1)'

Similarly

Pr[no tones jammed] q i- N 1

(2N-q"• (2N- 1 -q'I
(2N-• q) 2N-I -) (116)

And lastly, the probability that both tones are jammed is

P[ both jammed] = Pr[1 jammed ri 0 jammed]

q )( I) (117)

All that remains is to determine the probability of error given that both branches are

jammed.

a. Extension of Single Interfering Tone Results

Now that both branches of the BFSK receiver contain jamming tones,

symmetry is restored. [Ref. 11 ] Hence, we can determine the probability of bit error

supposing that signal s, is sent. An error occurs when the output of branch two is greater

than the output of branch one and (54) yields

P7[errorltwo tones jammed] = x

[ 7"hTba C+aj+ c ab QjaiTb Tbla2+a3+2aCaJcos8
l -O a +Q'6 (118)
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Alternatively, this may be expressed as

P,[errorItwo tones jammed] = Q1 Tb C c -

(1ex Tb(ac +2c+a + 2acaJcos8) 1 Taj P ++a2+2acajcos, 1
W exp 202 x 10 - 2 (119)

The conditioning on the received amplitudes of the signal and the jammer is removed by

multiplying (119) with (80) and (81) and integrating over all values of a, and ac. In

addition, the conditioning on the signal-to-jammer phase difference, 6, must also be

removed.

In order to make (119) valid for FFH, we substitute (111) into (119). Now,

symbolically the probability of error in the case of both tones jammed, Pb2, is

b2, 1- I) fo n fo ,.,,(ai) 2c f,,.(,ac)

___i~ F2N (T " 2 N 2N"

{, qa2+ N aJ+ 2 a a qN cos6 1

Tb' Cos 8)}

X T IaJfq a2 + a 2 + 2aca., cos8 61dacdaijd (120)
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Substituting our previous results for BFSK and (120) into (114), we get the

total probability of bit error

Pb =(Nq)(N I-q) exp rI
= 2N A 2N-1 4b+2 e 4bp

+ ('-'f-L'l) -O b+T~J+2 ' •b+T~+ 2

- _-

2__1 - (12 2)____

+ (j2) J-(ýb + ýJ) 2 Jý, ]ý
q(~ Pb (ýb (ý~ bJ J (121)

Further simplification results by using the substitutions

2 T
Yb ac (122)N,

which implies

dyb- 2aTb dac (123)N,,

and

2 T6Y= aT (124)
N,

which implies

dyJ = 2aj= T daj (125)No)

Then using (122) through (125) in (80) and (81)
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frc(Yc)e(L)expjI Y' + x lo[2 Y~s](126)

and

fr,(Yj) -I~exp{I-J+ýJ x Io 2 (127)

b. Special Cases when Allowing Two Interference Tones

As a consequence of the triple nested numerical integration required by (120)

in order to evaluate (121), obtaining numerical results when two tones can jam a single

hop slot is computationally intensive. Based on the results when thermal noise is

neglected, we expect the performance will be better than when only a single interfering

tone is allowed.

When there is no signal fading

"TY = 7b = Y b and O = 0 (128)

and when there is no jammer fading

-J =Yj=J and 4j =0 (129)

In the case of Rayleigh fading of the signal

T, = 4 and "t= 0 (130)

and

T3 = ;i and Q= 0 (131)

when the jammer is Rayleigh faded. Two limiting cases allow evaluation of the most

pessimistic and most optimistic performance. Optimistically, from the communicator's
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point of view, when there is no signal fading and Rayleigh fading of the jammer, the

probability of bit error reduces to

Pb=(2N- q) (2N - q- Il'xp15hi I + (_I)(2N- q )exp _7_•b 1+2--N )A 2N-1 NýN-I 2~

'IN] N- q') (_ I x rf

2N !.'--It') 27 J fr,-(yj) x Q(2Nyjlq, ýYb + 2Nyj/q+ 2 2NybyJ/q cos5 )

exp { (7(yb + 4Nyl/q + 2 ,2NybyJ/q cos 8)1

x 1o[ 2Nyq •Yb + 2NyjI/q+ 2 2NYbyj/q cos6 J}dyjd6 (132)

which requires two numerical integrations rather than three.

The most pessimistic performance result from Rayleigh fading of the signal

and no fading of the jammer. In this case,

(2N-q')(2N-q- Ie I{.bI+ (4 q)(2N-q') J -4b
Pby2N J 2N-l ) 2 p 4 N + 2 N )exp 2A.,+2

q +

(_) (2N -- _ 1() 2n ) frh(Yb)× {Q( 2NYJ/q., ý7 + 2Nyj/q + 2 2Nybyj/q cos6

-W2exp {I !(yb + 4Nyj/q + 2 J2Nybyj/q cos 6)1

x 10[ ý2Nyj/q b + 2Ny.//q + 26 2 Nybyj/q Cos6 (133)
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Further simplification when neither the signal nor the jammer fade. In this

instance (132) reduces to

P(2N- q) (2N-q -l Ib }+Pb=, 4N A ,2N- I )xp1[ 2 1

q4 )(ZN-q r,-Q() ,,'
(4N} A-L ý ,NJlq,

exp {-l(jb + 2NJ'q)j x Io[ F2N~b•J'q]]

1 2 1

q(9~ Q2I (1 ~ 2-N,/q 7 + 2Nyj/q + 2 ý2NYbyJ/q Cos 5

exp { (7b + 4Nyj/q +2 [2NybyJ/q cos 6

x IO[ ý2Nyj/q ,/Yb + 2Nyj/q +2 V2Nybyj/q Cos 6lDd8 (134)

where a single finite numerical integration over the phase angle is required. In this thesis

only (134) is evaluated. Further work in this area could consider the effects of Ricean

fading in the both tones jammed case based on (120).
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C. MULTI-TONE INTERFERENCE NUMERICAL PROCEDURE

The crux of the numerical computation for this problem is the accurate and efficient

computation of Marcum's Q function. Originally the Q function described a shorthand

notation for the probability integral representing the output of a correlation detector

containing a radar target in the presence of narrowband Gaussian noise [Ref. 14].

The Q function, described by (59), has no closed form solution expressible in a finite

number of terms. Frequently cited equivalent expressions containing an infinite series of

Bessel functions, while valuable as analysis tools, do not ease the computational burden.

The strategy is to test the input arguments for their magnitude, difference, and the

presence of zeros. Based on the input arguments the program computes the value of the

Q function in an appropriate subroutine and returns to the calling program.

First, the presence of a zero passed as an input argument is tested. If present the

following simplification results

Q(a, 0) = 1.0 (135)

and

Q(o, P3)= exp {(½) 32} (136)

The second consideration is the magnitude and difference of the input arguments. If the

product of the arguments is greater than ten and their difference is greater than five, then

the Q function is computed using an asymptotic polynomial. If the magnitude of the

product is greater than 1000, then the Q function is computed by directly integrating (59)

using a large argument approximation for the Bessel function. For the semi-infinite
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integration required here, the Romberg technique is very efficient. The Romberg

technique is a recursive implementation of Richardson's extrapolation which is continued

until a user specified tolerance is reached. In theory and in practice it offers much faster

convergence and smaller errors than the standard trapezoidal or Simpson technique.

[Ref. 16]

If none of these conditions is satisfied the program defaults to a computation based

on a numerical inverse Laplace transform. The integrand of (59) is expressed in the

Laplace domain as [Ref. 10, equation 6.643.4]

"Then the integration may be determined from the inverse transform of

Q~c 0)< ~)=1x - I - )1 (138)

This is useful for many intermediate values of the input arguments.
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D. MULTI -TONE INTERFERENCE RESULTS

First, the results for the scenario in which at most one tone is jammed per hop slot

are presented. The performance for a wide variety of channel conditions is computed for

several representative signal to thermal noise ratios. All figures are for one hop per bit

(L=I). For each channel case there are two prime questions to be answered. First, "How

does performance vary for fixed values of q?" Second, "Is the no fading analytic and no

thermal noise worst case q still valid for fading channels?" To answer the second

question the proposed worst case value of q, q0 ,is used to compute performance as well

as some values of q offset from q0 . To show the trend, the results of q,,+ 4 and q. -4 are

compared with q. based performance. Table 2 provides an overview of the channel

conditions considered.
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TABLE 2. MULTI-TONE CHANNEL CONDITIONS

NAME Eb/No dB Rb / Rj /
Ricean Fading Ricean Fading

Figure 25 13.35 100 / Very Weak 100 / Very Weak

Figure 26 13.35 100 / Very Weak 0.0 / Rayleigh

Figure 27 13.35 0.0 / Rayleigh 100 / Very Weak

Figure 28 13.35 10 / Moderate 10 / Moderate

Figure 29 13.35 0.0 / Rayleigh 0.0 / Rayleigh

Figure 30 13.35 10 / Moderate I / Strong

Figure 31 13.35 50 /Weak 50 /Weak

Figure 32 13.35 25 / Low 25 / Low

Figure 33 20 10 / Moderate 10 / Moderate

Figure 34 20 1 / Strong 10 / Moderate

Figure 35 20 10 / Moderate I / Strong

Initially, we consider the case where fading has very little influence to compare with

a no fading analytic result. Figure 25 is an illustration of the performance obtained with

a moderate signal-to-thermal noise ratio that typically provides a 10'o bit error ratio in the

absence of fading and interference. Thus, Figure 25 provides a good basis for

comparison with the no fading case. The worst case performance is seen as the envelope

of the fixed q curves. As the signal-to-jammer power increases, the performance quickly

approaches 2x10 5 , which is very close to the no jamming performance. We can also see

that the degradation inflicted by multi-tone jamming is strongly influenced the choice of a

fixed number of interference tones.
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Figure 25. Eb/No=13.35dB, Rb =100, Rj=100

To bracket the range of expected performance the case of extreme of Rayleigh

jammer fading and very weak signal fading is depicted in Figure 26. Here the

performance is slightly improved at lower signal-to-jammer power ratios than is

observed in Figure 25. Equivalently, the worst case envelope is slightly inclined more

toward the y-axis indicating better performance. However, at low signal-to-jammer

power levels, the performance is stifl relatively poor.
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Figure 26. Eb/No=13.35dB, Rb=100, Rj=0.0
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Figure 27. E/N 0,=13.35dB, Rb= 0, Rj=100

At the other extreme, a pessimistic performance is obtained when the signal suffers

Rayleigh fading, but the jammer has very weak fading. The jammer is able to reduce

performance overall and maintain a high bit error ratio (BER) for higher signal-to-jammer

power ratios. Even at E^N=30dB, the effects of fading and jamming produce a BER

near 4x 102 .
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Figure 28. Eb/No=13.35dB, R-b=10, Rj=10

In Figure 28 we display the performance when both the signal and the jammer

experience moderate Ricean fading. As expected the performance lies between the

optimistic case of Figure 26 and the pessimistic case of Figure 27. In this case each tone

contains the same direct-to-diffuse power ratio, but as E^NJ grows above 0dB, the direct

signal power is greater than the direct jammer power and is able to mitigate the influence

of multi-tone jamming.
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Figure 29. Eb/NO=13.35dB, R1=O, Rj=O

In Figure 29, the signal and jammer again share the same direct-to-diffuse power

ratio, but now Rayleigh fading is assumed. The performance is worse overall compared

with the moderate Ricean case and approximately 3dB worse at higher signal-to-jammer

power levels. Also note that the worst case occurs at q=1000. Therefore, the greatest

degradation occurs when the jammer is forced into the multi-tone equivalent of

broadband jamming.
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Figure 30. Eb/No= i3.35dB, Rb=10, Rj=I

In Figure 30, the channel conditions are more favorable to the communicator and

represent a ten fold increase in the Rb over the R, from the performance depicted in

Figure 28. At the critical value of 0dB for the signal-to-jammer power ratio (EWlNj) the

performance in the favorable channel ( Figure 30) is 3.3xl04 while in the moderate

Ricean channel (Figure 28) the same ENJ^ produces a BER of 2.1x10 3 . So the fact that

the jammer suffers more fading over the Ricean channel produces a small improvement

for the communicator.
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Figure 31. E/No=13.35dB, Rb=50, Rj=50

Figure 31 is similar to Figure 25, but includes less fading. The performance is

essentially the same as the very weak fading performance, but with some slight

improvement for EWNj greater than 0dB. As in earlier fading channel cases, the

performance varies greatly for fixed values of q when the jammer has a power advantage.

76



Pb
1 E+0

3E-1 q=1 q=10 q=100 q=1000

1E-1

3E-2

1 E-2

3E-3

1E-3

3E-4

1E-4
-30.1 -15.05 0.0 15.05 30.10

EblNJ (dB)

Figure 32. EbJNo=13.35dB, R1,=25, Rj=25

Figure 32 depicts another drop in the channel direct-to-diffuse ratio shared by the

signal and jammer. At this level the difference in performance below the very weak case

where the direct-to-diffuse ratio was 100 is noticeable. When the jammer enjoys a power

advantage, the BER is still unacceptably high. The worst case envelope curve is nearly

linear above E.INo=0dB and nearly flat for all choices of q above 0dB.
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Figure 33. EbINo=2OdB, Rb=10, Rj=10

In Figure 33 we begin to look at the performance for larger signal-to-thermal noise

ratios. An increase in EW/NO from 13.35dB (Figure 28) to 20dB (Figure 33) both in

moderate Ricean fading, provides an overall improvement in performance. However, the

improvement is significant when E^NJ is greater than -12dB and provides nearly a factor

of ten at 0dB.
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Figure 34. EWN. =20dB, Rb=10, R1=10

Figure 34 shows how rapidly performance can degrade even for a strong 20dB

signal-to-thermal noise power ratio when the signal fading progresses from moderate

(Figure 33) to strong Ricean fading. Similar to the situation observed in Figure 27 , the

worst case performance is obtained when the jammer places an interfering tone in every

hop slot. The jammer therefore, need not be very sophisticated to prevent efficient

communications. In Figure 35 the roles are reversed. With the same signal-to-thermal

noise ratio, the signal experiences moderate Ricean fading while the jammer experiences

strong Ricean fading.
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Figure 35. Eb/No=20dB, Rb=10, Rj=l

With moderate Ricean signal fading a particular value of q. is required to cause the

worst case performance demanding greater jammer sophistication. The strongly faded

jamming tone is much less effective when E^NJ is greater than 0dB. Previously we

observed an approximate tenfold drop in BER experienced for the Eb/No = 13.35dB case as

the jammer fading grew from moderate (R,=10) to strong (Rj=l) at Eb/NJ=OdB. This

trend is more pronounced at the Eb/N =20dB level as we transition from Figure 34 to

Figure 35 where the improvement is greater than a factor of 25.
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The influence of fading on the selection of q to cause worst case performance in the

multi-tone environment remains to be answered. For FFH/BFSK in the absence of fading

and thermal noise we expect the worst case to occur when q is chosen as the integer

portion of the jammer-to-signal power ratio. A comparison of the following worst case

performance curves will show them to be the envelope of the previous fixed q computed

curves.
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Figure 36. Worst Case Multi-Tone Jamming for
Eb/N,,=13.35dB. Rb=0. Rj= 100

The most pessimistic case for the communicator is pictured in Figure 36 where the

signal has Rayleigh fading and the jammer enjoys essentially no fading. We see that in

this situation the jammer does not need to be very sophisticated to hinder communication.
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The results displayed in Figure 36 and in Figure 37 indicate there is essentially no

difference in the q0 performance and the q0 +4 and q0 -4 cases.
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Figure 37. Worst Case Multi-Tone Jamming
E,/No= 13.35dB, Rb,=O, Rj=O

The conclusion to draw from Figure 37 is the degradation in channel conditions for

the jammer does not significantly assist the communicator when both are acting through

Rayleigh channels.
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For convenience we will denote the qo+4 and qo-4 collectively as Aqo. It is not until

there is some appreciable direct sign,.1 power reaching the receiver that the q. and Aqo

begin to show some deviation.

Pb
5E-1

2- qo-4 qo qo+4

1E-1

5E-2

2E-2

1 E-2

5E-3

2E-3

1E-3
-30.1 -15.05 0.00 15.05 30.10

Eb/NJ (dB)

Figure 38. Worst Case Multi-Tone Jamming
Eb/No =20dB, Rb=10, Rj=10,

In Figure 38 the Aqo curves dip below the anticipated worst case curve. The trend

progresses as the direct-to-diffuse ratio increases in Figure 39 and Figure 40 respectively.
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Figure 39. Worst Case Multi-Tone Jamming
Eb/NN=13.35dB, Rb=25, Rj=25,

Since the value of q is required to be a positive integer greater than or equal to one,

there is a small discontinuity in the q.-4 curve. At those signal-to-jammer power values

where the q0 value would be less than 5, the q.-4 defaults to q=1 for the computation.
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Figure 40. Worst Case Multi-Tone Jamming
Eb/No =13.35dB, Rb= 5 0, Rj=50,

The salient observation in Figure 38, Figure 39, and Figure 40 is that the anticipated

worst case performance in the no fading and no thermal noise case remains the worst case

performance for the weakly and moderately faded channels with moderate thermal noise.
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For comparison Figure 41, Figure 42, Figure 43 displays the composite worst case

performance for various signal-to-thermal noise ratios.
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Figure 41. Worst Case Multi-Tone Jamming for Several
Values of Eb/No, Rj=l, R,=I

Figure 41 displays the performance when both the signal and the jammer suffer

strong fading. The diffuse nature of the channel keeps the probability of bit error

relatively high despite high signal-to-jammer power ratios and serves more to the

detriment to the communicator than the jammer.
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When the channel has moderate vice strong Ricean fading the performance is that

shown in Figure 42. Above -6dB E^NJ there is a significant improvement in

performance over that in Figure 41. The noticeable change in slope for the 20dB curve is
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Figure 42. Worst Case Multi-Tone Jamming for Several

Values of Eb/No, Rb=0, Rj=1O

a consequence of the signal-to-jammer phase term in the bit error analysis. When the

signal amplitude is consistently greater than the jammer's amplitude, the phase difference

has little effect and the rate of improving performance increases. This slope change is

also noticeable in Figure 43 for the 20 dB curve.
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Figure 43. Worst Case Multi-Tone Jamming for Several
Values of Eb/No, Rt=100, R1 --

Figure 43 is a composite of performance under channel conditions favorable to the

communicator. However, the 10:1 ratio in the signal's direct-to-diffuse over the jammer's

direct-to-diffuse ratio provides little relief to the communicator.

Figure 44 displays the performance when the jammer's intelligence is relaxed to

allow two interference tones in a hop slot when neither the signal nor the jammer

experience fading.
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Figure 44. Worst Case Multi-Tone Interference when
Allowing Two Jamming Tones per Hop Slot

Figure 44 exhibits the same linear improvement in performance as E^NI decreases

for several values of Eb/No. There is a marked change in slope at Eb/Nj =0dB. Overall

performance is better thar. the perfromance when at most one tone per hop slot is jammed

in a near Gaussian channel as depicted in Figure 40.
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IV. CONCLUSIONS

A. FFH/MFSK PARTIAL-BAND NOISE JAMMING

A performance analysis has been completed for the conventional fast

frequency-hopped M-ary orthogonal frequency-shift keyed receiver employing diversity

with noncoherent reception of signals transmitted over Ricean fading channels We can

draw several conclusions based on the results.

Diversity alone is insufficient to overcome the effects of worst case partial band

jamming acting in Ricean fading channels. The intelligent jammer can optimize the

fraction of bandwidth jammed to force a worst case bit error ratio (BER) The

noncoherent combining losses experienced by noncoherent systems is aggravated by the

low signal-to-total noise ratio. These two factors combine to mitigate the advantages of

increased diversity in a constant energy per hop system.

Increasing the modulation order provides only modest improvements in performance

which decrease as diversity increases. For most channel conditions, the performance for

M=4 and M=8 is essentially the same for all L greater than four. The only remaining

advantage for increased modulation order is to offset the reduction in data rate that results

from increasing diversity. L, in a constant energy per hop system.

When the signal experiences Rayleigh or strong Ricean fading, the jammer need not

be very sophisticated to cause marked impairment to the communicator. Additionally.

when comparing the partial-band jamming strategy for M=2 and L= I in which the signal
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suffers moderate to strong fading to multi-tone jamming under the same conditions. we

see that the partial-band jamming strategy causes a higher BER while requiring less

precise knowledge of the receiver by the jammer.

B. FFH/BFSK MULTI-TONE JAMMING

In this thesis. the case of L- I is considered for the fast frequenc. -hopped receit er

described above The influence of Ricean fading of both the signal and the jammer is

included in the anal% sis as is the effect of thermal noise

V-ir-t. the counter-intuim e result i, obtained that Ricean fading of the jammer

pro% ides little. if ans. relief to the communicator. whilc, as c\pectcd. mioderate ito strong

lading of the signal tone markedl reduces performance Worst case multi-tone lamming

combined %%ith signal fading produces unacceptabli high probabilitic, of bit error. i C.

greater than I0 Abose this lescl it is unlikel\ that tor%%ard error correction coding can

be successfull- implemented

The intelligent jammer can select the number of tones to jam %%hich produces a %korst

case perfOrmance The value of q chosen in the fading channel uAith thermal nois to

cause worst case performance is the same saluc of q amecd at analyticall. for the noise

free case without fading For all combinations of channel conditions. not until the

signal-to-jammer po%%er ratio exceeds I OdB is the performance essentiall. thermal noise

limited When the jammer has a 3dB or better poser adtanuge' the performance. in ecen

the most optimistic channel conditions. is 'er. poor and is dominated b\ the jammer

power

91



LIST OF REFERENCES

I1 C. 1-. Cook. F W. 1lelsick. I.. B. Milstein. and D. L. Schilling. Spread Spectrum
(ommuni'ations. Ne,, York: IFlI- Press. 1983

121 J (I Proakis. (Communcation Sti.tem- Engineering. New% Jersey: Prentice Hall. 1994

III R C Robertson and K Y l.ec. "Performance of fast frequency -hopped MFSK reccivers
%%ith linear and sclf-nornalization combining in a Rician fading channel with partial-band
intertfeence.- It FF./ Selected.4reai (ommunicatun. vol 10. pp 731 -741. Ma% 1992

141 R ( Robertson and I 1 Ila. "iFrror probabilities offast frequency -hopped MFSK with
nomse-xormahization combining in a fading channel wlth partial-band interference." IEEE
Tranm (ommunication. vol (OM-40. no 2. pp 404-412. Feb 1992

15 1 .A (iulhier and F- Barr% Felsead. "Antijam b% fast FH NCFSK myths and realities."
P'roceding.% of the IEF .ihlitarn ("ommunicationtv Conference. pp. 187-191. 1993.

161 J S I ec. I. I.. Miller. and R. !i. Frerich. "The analyses of encoded performances for
certain ICCM receiver design strategies for multi hops/symbol FH/MFSK waveforms."
If. .1 Select Areas Commun. vol. SAC-3. pp. 611-620. Sept. 1985.

171 1 A (iulliver. R. FL [zers. E. B. Felstead. and J. S. Wight, "The performance of
diversity combining for fast frequency hopped NCMFSK in Rayleigh fading,"
Proceeding.s of the IEEE Military Communications Conference, pp. 452-457, 1992.

181 U M. Keller and M. B. Pursley. "Diversity combining for channels with fading and
partial-band interference." IEEE.J Select. Areas Commun., vol. SAC-5, no. 2, pp.
248-260. Feb. 1987.

191 A. D Whalen. Detection of Signals in Noise, New York: Academic Press, 1971.

1101 I O S. Gradshteyn and I. M. Ryzhik. Table of Integrals, Series and Products, San Diego:
Academic Press. 1980.

(Ill R. C Robertson, "Communication ECCM," class notes from EC 4560, Naval
Postgraduate School, Monterey, CA, Jul. 1993.

93



INITIAL DISTRIBUTION LIST

Defense Technical Information Center 2
Cameron Station
Aicxandna, VA 22304-6145

2 I.ibrary, Code 52 2
Naval Postgraduate School
Mo itcrey, CA 93943-5101

3 Chairman, ('ode EC
Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, CA 93943-5121

4 Professor R. Clark Robertson, Code EC!Rc
Depanment of Elecrical and Computer Engineering
Naval Postgraduate School
Monterey, CA 93943-5121

5. Professor A. Lam, Code EC/I.a
Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, CA 93943-5121

6. Naval Research Laboratory
Code 9120
4555 Overlook Ave.
Washington, DC 20375-5320

7. LT Joseph F. Sheltry 2
11 Whittier St.
Winthrop, MA 02152

95


